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ABSTRACT

New plots are proposed based on minimum and maxirorder statistics that is visually appealing, etsy
understand, stable at extreme tails and capturénfaltmation about the distribution of the data.eThinimum and
maximum plots give more weights to the data atedkizeme tails unlike quantile quantile plot. Theref it can be
considered these plots as a completeness of thilguguantile plot. The minimum and maximum plate used to obtain
a nonparametric visualization for the Gumbel andbWé distributions. Moreover, the minimum and maxim normal
plots are introduced and compared with quantilentiigaplot. The new plots have advantage to beiagpb discrete

distributions.

KEYWORDS: Extreme Values, Gumbel Distribution, Order StatistiQ-Q Plot, Weibull Plot
Msc2010 Classification: 62 Statistics (62gxx)

1. INTRODUCTION

Graphical presentation of data is an important ilwskiences. Good graph reflects a great deaifofrnation and
can be used to extract new conclusions while bagtgcan be misleading and confusing. Given a rans@mple of
univariate data points, a pertinent question isthdrethis sample comes from some specified digiohuF. Decision
techniques are based on how close the empiricalldion of the sample and the distributiBrare for some sample size

n.

Quantile-quantile (Q-Q) plot is commonly used devio graphically and informally test the goodnek§tmf a
sample in an exploratory way. It is used to pla #ample quantiles against the theoretical quantifeother sample
guantiles and then a visual check is made to sethehor not the points are close to a straigls; Isee, Chambers et al
(1983), Cleveland (1994), Scott (1992) and Clewtland McGill (1988). The pattern of points in thietps used to
compare the shapes of distributions, providing aphical view of how properties such as locatiomles@and skewness.
The use of Q—Q plots to compare two samples of databe viewed as a non parametric approach to aamgptheir
underlying distributions. A Q—Q plot is generallyn@ore powerful approach to do this than the comitemhnique of
comparing histogram of the two samples, but reguimere skill to interpret; see, Makkonen (2008) &Nk and
Gnanadesikan (1968).

Extreme order statistics plots are proposed baseminimum and maximum order statistics from popataof

size k (Min-Max plots). The plots can be done in parametnd nonparametric ways. The Min-Max plots giveren
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48 Elsayed A. H. Elamir

weights to the data at the extreme tails of th&ridigtion. Therefore, these plots will complete thieture of the data with
QQ plot especially at the extreme tails of theritistion. Min-Max plots are used to obtain nonpagtie characterization
for the Gumbel and Weibull distributions. Sinceaaisty of estimation and inferential procedureshia practice depends
on the assumption of normality, the Min-normal pdotd Max-normal plot are introduced and compareth @i-Q plot.
These plots characterize and capture all informagioout the whole distribution of the data. Thegyatof the points in
the Min-Max plots is used to compare the shapedigifibutions non-parametrically. Min-Max plots awsed to plot the
data against theoretical extreme order statisticsample extreme order statistics and then a vishetk is made to see
whether or not the points are close to a straiglg but the Min-Max plots have more stability at ttails of the
distribution than Q-Q plot.

The extreme order statistics plots and their chiaraation to probability distributions are derivadSection 2.
The Min and Max normal plots are introduced in 8ect3. The nonparametric visualization for Gumbietl aVeibull
distributions is proposed in Section 4. An extengidMin and Max plots to discrete distributiong @mtroduced in section

5. Two applications are studied in Section 6. ®&cti is devoted for conclusion.

2. EXTREME ORDER STATISTICS PLOTS
2.1. Extreme Order Statistics

Let X;, ..., X,be a sample from a distribution functiéh probability functionf (x) and quantile function(F).

When theX;’s are arranged in ascending order of magnitudetlzewl written as
Xl:

X, is therth order statistic. Since the eveft.{, < x) occurs if and only if at leastof theX;'s are less than or

equal tox, E.., is expressible in terms éfas the binomial tail probability
Fron(®) = Pl <) = ) () FI) 11— FEOI™
j=r

The expected value of order statistics is

1

500 = (3) [ *F -y drr < m

o

This can be re-written as
— L r—1 _ n—r
E(X,) =7 () Elx(F)F (1= F)"™"]
See; David (1981)
Let
M, =max{X,, .. X,}

nin

Denote the maximum of the firatrandom variables. Its distribution function is gjivby
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F,,=[F(x)]"—w<x <w

nin

As pointed out by Arnold et al. (2008), clearly kriledge of the distribution of,,.,, determineg”(x) completely.

This is true since

F(x) = [F, 1" —w <x <o

Moreover, Chan (1967) has shown tha iK| < o thenF (x) is uniquely determined by the sequence
(E(x, )n=123 .}

Let
M, = min{X,,.., X,}

Denote the minimum of the firat random variables. The distribution function isegivby
F,=1—-[1-Fx)]",—w<x<w

Clearly knowledge of the distribution &f.,, determined” completely. This is true since
Flx)=1-[1-F,]""—o<x<m

Also, Chan (1967) has shown thaFifX| < o thenF is uniquely determined by the sequence
{(E(X,,)n=123, ..}

For example,
E(X,,)=1/nn=12]3,..

if and only ifF is unit exponential{(x) = 1 — exp (—x), x > 0),
E(X,,) =2n/(2n+1),n=123,..

if and only if F is triangular £ (x) = x2,0 < x < 1) and

E(X1n)=1/2"-1),n =123, ...

if and only if F is geometri¢P(X = x) = 27*"1,x = 0,1,2, ...); see, for example, Huang (1989).
2.2.Min and Max Plots

For a given data of size, x4, x,, ...., x,,, the theoretical min curve based on the expecsuaevof order statistics

is defined as
E(Xy) =kE[x(F)A—-F)*'Lk=12,..n
From Downton (1966) and Elamir and Seheult (2088) ¢an be estimated as
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n

(ﬂ _ i)xi:n =120

E(chj= k—1

i=1

o~
Eal S
e

The theoretical max curve based on the expectedt \alorder statistics is defined as
E(Xk:kj = kE[x(F]Fk'l],k =1,2,..,n

From Downton (1966) and Elamir and Seheult (2084&) ¢an be estimated as
1 (]
. i—1
E(X,) = TZ (k - 1):;:.,,! k=12, ..,n
()&=

Nonparametric extreme order statistics plot coagi§two plots

Min curve := (k Or X, Versus E[Xl:k]), k=1,...mni=12,...n
This curve starts from the average= E(X,.,) to the minimum value;,., = E(X,.,).

Also the max curve is plotted as

Max curve:= (k Or X, VErsus E(Xk:kj),k =1,.,ni=12..,n

This curve starts from the average= E(X,.;) to the maximum value,,.,, = E(X,,..,,)-

Both curves should tell us the whole picture alibatdistribution function of a random varial¥efor a given data. Also
each curve in its own should reflect all the infation about the whole distribution for a randomiafale X for a given

data.

Extreme order statistics plots can compare themledistribution with any data using
Min plot: = ({E(xmj versus E(Xy,) ), k = 1, n)
and
Max plot:= ((E(Xk:k] Versus E(Xk:k]), k=1,.. ,ﬂ,)

Also if two data come from the same distributidre full nonparametric plot is

Min line plot = ((E(XJ.:?{) versus E(Xl:kj), k=1, ,n)

and
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Max line plot = ({E(ij versus E(ij)r k=1, ...,n)

In all these cases the Min and Max plots shouldwstatationship close to straight line.
3. MINI AND MAX NORMAL PLOTS

Since a variety of estimation and inferential pahaes in the practice depends on the assumptiomhality,
the graphical characterization of the normal disttion is very important and the most common grgpduantile quantile
normal plot. The Min and Max normal plots will colege the picture of QQ-norm plot especially at éxtreme tails of
the distribution. The Min-norm plot is proposed fpigtting the exact minimum order statistics of skzérom standard
normal distribution that can be obtained from paekénvStats in R software versus estimated minimum order stta$

from a data as
Min normal plot= (eVNormOrdStatsScalar(l, k) versus E(Xy..), k = 1,2, ...,n)
Also the maximum plot is proposed as

Max normal plot := (evNormDrdStatsScalar(k, k) versus E(X,, ).k = 1,2, .. ,n)

The pattern of points in the Min-normal and Max+mat plots must show straight line or close to gtnaline.

Figure 1 shows Min-normal, Max-normal and normaQ@lots for simulated data from normal distributi@®0,20) and
n = 200. It is clear that the Min-normal gives more wegyht lower tail of the distribution while the Maxomal gives
more weights to upper tail of the distribution. Blalso that the Min and Max normal plots are maable than QQ-

normal at the extreme tails of the distribution.

Min-normal plot Max-normal plot Normal Q-Q Plot
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Figure 1: Min Normal, Max Normal and Q-Q Normal Plots for Simulated Data from Normal
Distribution (500, 20) ANDn = 200.
Moreover, the location and scale parameters cagstimated from Min and Max normal plots. The meathe
population can be estimated from the largest vadudin plot and the lowest value in Max plot, i.8.~ 501. The Gini's
measure (G) of variability can be estimated fromlot by using the highest two points in Min pdotd lowest two points

in Max plot where
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G = E(Yy, — ¥y5) = 2E(Yy,y — Vi) = 2E(Voy — ¥yq)

The estimated Gini's measure is 2(501-491)=20 46d12501)=20; see, Elamir (2013).

Figure 2 shows Min, Max and Q-Q normal plots fomgiated data from Laplace distribution (500,20) and
n = 200. Note that the curvature is clear in the Min ptormal. Note that R-program for Min-normal and Maormal

plots is given in Appendix A.

Min-normal plot Max-normal plot Normal Q-Q Plot
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Figure 2: Min, Max and Q-Q Normal Plots for Simulated Data from Laplace
Distribution (500, 20) Andn = 200.

4. NONPARAMETRIC VISUALIZATION

The extreme order statistic plots can be useddaparametric visualization for Gumbel and Weibugitidbutions

as follows.
4.1. Gumbel Distribution

This distribution is used to model the distributiohthe maximum or the minimum of a number of saspbf
various distributions. It is useful in predictiniget chance that an extreme earthquake, flood or otiteral disaster will

occur; see, Gumbel (1954). Consider the densitgtfon for Gumbel distribution is given as
flxia,p) = frexp[—(x— a)/Flexp[—exp[—(x — a)/F]l—w < x < 0
and the cumulative distribution function is

F(x) = exp[—exp[—(x — a)/B]]

From Arnold et al. (2008) the maximum order statsstan be obtained as

E(X..)=a+0.57728 + Blogk
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Completely nonparametric visualization for Gumbistribution can be done as

Max plot: = [lcrgk, E(Xx,.,) ),k =12, ..,1
Also the quantile function is
x(F)=a— flog(—log F)

The quantile plot is

quantile plot := (log(—logF),x,),i = 1,2, ...,n

histogram for Gumbel Quantile plot Max plot
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Figure 3: Histogram, Quantile and Max Plots for Sinulated Data from Gumbel (10, 5)
Distribution and n = 200

It is clear from Figure 3 the Max plot has direithght line and the quantile plot has inverseigtraline. This is
a very strong indication for Gumbel distributionoMover, the slopes for two plots are -4.934 af@%and the intercepts

are 9.889 and 12.948, respectively.
4.2. Weibull Distribution

The Weibull distribution is used in many areas swsh survival analysis, reliability engineering, s
forecasting and wind speed analysis; see, Johrtsah @994). Consider the density function for Wi distribution is

given as

d-1

d sx - E
. = —| = —(x/A)
FEas)=5(3) e x=20681>0

The cumulative distribution function is known to be

Flx)=1 — e~ =7
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The minimum and maximum order statistics can baiobt from Arnold et al. (2008) as

E(Xy,) =Al(1+ 1/8)k™Y8

and

E(Xpp)=2AI(1+ 1;5]?(—1)1(‘% j‘ 1) (14 j)t1/8

=0

Completely nonparametric visualization for Weibdlktribution may be obtained by taking the logaritiof
E(Xlzk) as

1
log E(X,,)=logd+logl(1+ 1/8) — Elngk,k =12,..,01

Therefore,

log Min plot = [logk . IDEE[XLJ{])

5-1
This indicates that the Weibull distribution witeresity f (x; 4, 8) = %(g) e~(®/D° can be characterized by the

inverse linear relationship between the logaritirmimimum order statistics and the logarithm of theks whatsoever the

values of the parametetsandd. Also, this plot characterizes the exponentiafritiation for§ = 1; i.e., the slope is 1.

The quantile function can be obtained from cumuéafunction as
log[—log(1 — F)] = —&log A + log x

Therefore, log quantile plot is
log quantile = (log x,,log[—log(1— F)],i = 1,2,...,n)

This is also known as Weibull plot; see, Johnsonle{1994). This indicates that the Weibull distion with

5-1
densityf (x; 4,6) = g(ﬁ) e~(/M° can be characterized by the direct linear relatigmbetweerog[—log(1 — F)] and

log x;.
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simulated data from Weibull (1,0.5) log quantile plot log min plot
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Figure 4: Histogram, Log Quantile and Log Min Plotsfor Simulated Data from Weibull (1, 0.5)
Distribution and n = 200

It is clear from Figure 4 the log min plot has irse straight line and log quantile plot has a disb@ight. This is a very
strong indication for Weibull distribution. Moreayéehe slopes for two plots are -1.85 and 0.53taedntercepts are 0.445
and -0.062, respectively.

5. DISCRETE DATA

The Min-Max plots have advantage to be applieddiscrete distributions to graphically and inforrgakst the

goodness-of-fit of a sample in an exploratory way.

The binomial distribution with parameters andp is the discrete probability distribution of themioer of successes in a

sequence af independent yes/no trials each of which yieldsssas with probability. The probability mass function is
. — x _ m—x —
fmp) = (7)p @ -p)" 2 =01,...m

and cumulative

&

F) =Y (7)p/(1—p)m
> ()

=
From Arnold et al. (2008) the minimum and maximurder statistics can be obtained as

E(X,.) = Z [1— F(x)]*

and
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E() = ) (1= [FT)

Bernoulli distribution is a special case of binohaestribution atm = 1 where a random variable which takes the
value 1 with success probability pfand the valu® with failure probability ofg = 1 — p. The minimum and maximum

order statistics can be obtained in a simple faynBiernoulli distribution as
E(X,,)=p"and E(Y,,,)=1—-q%k=12,..,n
For givenp, the proposed plot for Bernoulli distribution is
Min plot = (p* versus E(X,,, ),k = 1,2, ...,n)
and
Max plot == [:1 — g*versus E(X,, ), k=12, ,ﬂ)

Figure 5 shows Min and Max plots for simulated datem Bernoulli distribution (p=0.5) and = 100 versus
theoretical Min and Max valugg® and1 — g*. Also, Figure 6 shows Min and Max plots for sintathdata from Bernoulli

distribution (p=0.05). Both graphs show straighes.

Bernoulli Min plot with p=0.5 Bernoulli Max plot with p=0.5
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Figure 5: Min and Max Plots for Simulated Data from Bernoulli Distribution (P=0.5) versus the
Oretical 0.5%and 1 — (0.5)*Andn = 100

Impact Factor (JCC): 2.6305 NAAS Ratirgy19



Extreme Order Statistics Plot versus Quantile Quarite 57
Plot: Nonparametric Visualization for a Data

Bernoulli Min plot with p=0.05 Bernoulli Max plot with p=0.05
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Figure 6: Min and Max Plots for Simulated Data from Bernoulli Distribution (P=0.05) versus the
Theoretical Versus Theoretical0. 05%and 1 — (0.95)*Andn = 100

Figure 7 shows Min and Max plots for simulated datem Bernoulli distribution (p=0.5) versus the ¢etical

0.80%and1 — (0.20)*andn = 100. It is clear that the data does not come from Bellindistribution.
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Figure 7: Min and Max Plots for Simulated Data from Bernoulli Distribution (P=0.5) Versus the Theoretcal
Versus Theoretical0.80%and 1 — (0.20)*andn = 100

The geometric distribution that is used for modgline number of trials up to and including thetfgsccess that

requiresx number of independent trials each with successgtnitity p is defined as
flx)=pg*tx=12,..

From Margolin and Winokur (1967) the Min order &t¢s can be obtained as

E(Xy,) = 1 g~

and Max order statistics
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r—1 ik —1
E(ka):kzo.( 1)( J )

+ 11— g7F)
Therefore, for givem the proposed Min and Max plots for geometric disttion are
Min plot = (ﬁ E(X,.). k=12, ...,'n)

and

Max plot:=

17 E—1 )
ZU+1)(E_ q}-l-)lj’E[:Xk:k)rk=1;2,..._,‘H,

6. APPLICATION
6.1. Application 1

An experiment was performed to determine whether fvms of iron (F& and F&" are retained differently. If

one form of iron were retained especially welly@uld be the better dietary supplement. The ingastirs divided 36 mice

randomly into two groups of 18 each. The mice wgiven iron at concentration 1.2 millimolar for baghoups and later

time count was taken for each mouse, and the pegerof iron retained was calculated; see, Ric®FL9The data are

given in Table 1. Are these data come from the sdistabution?

Table 1: The Percentage of Iron Retained at Conceradtion 1.2 Milli molar

Y=Fe** | 2.2 [2.93]3.08]3.49] 4.11 | 495 | 5.16 | 554 | 5.68 |
6.25| 7.25| 7.9 8.85 11.96 1554 15/89 18.3 18.59

Yi=F&" | 4.04| 4.16] 442 498 549 577 586 6028 6/97
7.06| 7.78] 923 934 901 13.46 184 2389 26.39

Figure 8 shows the Min line, Max line and QQ plfaisthese data. The mean can be obtained fromréqghgas

8.20 and 9.60, respectively. Also the gini's measures & 1.2 — 8.2) = 6 and 2(13 — 9.6) = 6.8.,respectively. The

plots indicate that the data are right skewed andat come from the same distribution.

Min line plot Mazx line plot quantile quantile plot
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Figure 8: Min Line, Max Line and QQ Plots for the Percentage of Iron Retained at Concentration 1.2 Mil Molar
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6.2. Application 2: Pareto Distribution

Pareto distribution represents one of the most tendistributions and it is widely used in economfagance and
natural sciences; see Johnson et al. (1994) anekeHat al. (2012). The density for Pareto | isrdefias

flx;8)=afx*“Lx=F=0,a=>0

Wherep is the scale and is the shape parameter and the smalléhe fatter the right tail of the distribution. =0
a < 2 the Pareto distribution has infinite variance. Eog 1 the expected value does not exist. Figure 9 shindine,
Max line and QQ plots for simulated data from Palrét0,3) for two variabley andy, andn = 180. It is clear that the
stability of Min and Max plots over QQ plot espédlgiat the extreme tails.

Min line plot Max line plot quantile quantile plot
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Figure 9: Min Line, Max Line and QQ Plots for Simulated Data from Paretoi (10, 3) for
Both y andy; andn = 180

7. CONCLUSIONS

Min and Max plots based on minimum and maximum osfatistic of sizet are proposed in nonparametric and
parametric ways. These plots are very useful eafhgdor heavy tailed distributions where they givere weights for the
extreme tails. It has been shown that the Min arek Mlots characterize the Gumbel and Weibull distion non-

parametrically using simple linear regression.

Since the normal distribution is very importantpiractice, the Min-normal and Max-normal plots aredduced
and it has been shown that they had completedither@ of the data with QQ plot especially at thixéreme tails of the
distribution. One more advantage of Min and Maxtples that they had extended to discrete distrmstisuch as

Bernoulli, Binomial and geometric to graphicallydainformally test the goodness-of-fit of a sample&n exploratory way.

One limitation of Min and Max plots is when the mxhe order statistics are not defined. But the &fid Max
plots may still be plotted using the available mfation and ignoring undefined values. Of coursethis case some

information will be lost.
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Appendix A: R-program for Min and Max normal plots

library(EnvStats)

library(VGAM)

par(mfrow=c(1,3)) ### 3 graphs in one page

LGd=function(x,t){ ### function for estimated Min order statistics

n=length(x); i=1:n; x=sort(x)
c1=1/choose(n,t)
tl=choose(n-i,t-1)*x
c1*sum(t1)}

LGo=function(x,t){ ### function for estimated Max order statistic
n=length(x); i=1:n; x=sort(x)
c1=1/choose(n,t)
tl=choose(i-1,t-1)*x
c1*sum(tl)}

n=200; k=1:n; y=rnorm(n,500,20) ### simulated normal data
wdy=0; woy=0; E11=0; Ekk=0
for (iin 1:n){
wdy[i]=LGd(y,i); woy[i]=LGo(y,i) ### estimated Min and Max order stat.
E11[i]=evNormOrdStatsScalar(1,i) ### exact Min order statist.
Ekk[i]=evNormOrdStatsScalar(i,i) } ### exact Max order stat
plot(E11,wdy,main="Min-normal plot",col="red",
xlab="Theoretical Minima", ylab="sample Minima") ### Min normal plot

M1=Im(wdy~E11); abline(M1) ### fitting straight line
plot(Ekk,woy,main="Max-normal plot",col="blue",

xlab="Theoretical Maxima", ylab="sample Maxima") ### Max normal plot

M2=Im(woy~EKK); abline(M2) ### fitting straight line
gqgqnorm(y); qqline(y) ##4# Q-Q normal plot
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